ST-20-

Autotrophic lactate production from H₂ + CO₂ using recombinant and fluorescent FASTtagged *Acetobacterium woodii* strains

Frank R. Bengelsdorf * ¹, Alexander Mook ¹, Jan Herzog ², Lotta Guhl ², Miriam Bäumler ³, Jonathan P. Baker ⁴, Nigel P. Minton ⁴, Peter Dürre ¹, Dirk Weuster-Botz ³, An-Ping Zeng ²

¹ Ulm University – Germany
² Hamburg University of Technology – Germany
³ Technical University of Munich – Germany
⁴ University of Nottingham – United Kingdom

Autotrophic lactate production was achieved by metabolic engineering of *Acetobacterium woodii*. Therefore, the genes (*lctBCD*) of the native Lct dehydrogenase complex, which is mediating consumption of lactate, were knocked out. Next, *A. woodii* was engineered to express a gene coding for a D-lactate dehydrogenase (LDHD) that originated from *Leuconostoc mesenteroides*. Additionally, this LDHD was N-terminally fused to the oxygen-independent fluorescence-activating and absorption-shifting tag (FAST). In autotrophic batch experiments using H2 + CO2, cells expressing the LDHD fusion protein produced up to 18.8 mM of lactate (Mook et al., 2022). The same strain produced 8.1 g L-1 of lactate (91 mM) with a rate of 0.27 g L-1 h-1 in a batch operated stirred-tank bioreactor with continuous gassing (Herzog et al. 2022). The N-terminal FAST caused a clear and brilliant fluorescence during exponential growth and in the stationary phase. For cells expressing the FAST-tagged LDHD fusion protein, flow cytometry at the single-cell level revealed phenotypic heterogeneities within the cell-culture (Mook et al., 2022). Thus, FAST provides a useful reporter tool to analysis gene expression during growth of *A. woodii* and enables quicker and more targeted strain optimization.